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THE THEORY OF COLLECTORS IN GASEOUS DISCHARGES

BV H. M. MOTT-SMITH AND IRVING LANGMUIR

ABSTRACT

When a cylindrical or spherical electrode {collector) immersed in an ionized
gas is brought to a suitable potential, it becomes surrounded by a symmetrical
space-charge region or "sheath" of positive or of negative ions (or electrons).
Assuming that the gas pressure is so low that the proportion of ions which
collide with gas molecules in the sheath is negligibly small, the current taken
by the collector can be calculated in terms of the radii of the collector or sheath,
the distribution of velocities among the ions arriving at the sheath boundary
and the total drop of potential in the sheath. The current is independent of the
actual distribution of potential in the sheath provided this distribution satisfies
certain conditions.

"Orbital Motion" equations for spherical and cylindrical collectors. —General
formulas for the current are derived and the calculations are then carried out
for collectors in a group of ions having velocities which are (A) equal and
parallel; (B) equal in magnitude but of random direction; (C) Maxwellian;
(D) Maxwellian with a drift velocity superimposed. In all cases the collector
current becomes practically independent of the sheath radius when this
radius is large compared with that of the collector. Thus the volt-ampere
characteristics of a collector of sufficiently small radius can be used to dis-
tinguish between the diferent types of velocity distribution. General equations
are also given by means of which the velocity distribution can be calculated
directly from the volt-ampere characteristics of a sphere or cylinder.

Special properties of the Maxmellian distribution. —For a collector of any
shape having a convex surface, the logarithm of the current taken from a
Maxwellian distribution is a linear function of the voltage diAerence between
the collector and the gas when the collector potential is such as to retard
arriving ions, but not when this potential is accelerating. This is a consequence
of the following general theorem: Supposing for simplicity of statement that
the surface of an electrode of any shape immersed in a Maxwellian distribution
is perfectly reflecting, then the ions in the surrounding sheath will have
a distribution (called D~) of velocities and densities given by Maxwell's and
Boltzmann's equations, even in the absence of collisions between the ions,
provided that there are in the sheath no possible orbits in which an ion can
circulate without reaching the boundary; but if such orbits exist, the distribu-
tion will be D~ except for the absence of such ions as would describe the circu-
lating orbits. As another corollary of this theorem there is deduced an equmtion
relating the solution of problems having inverse geometry. Finally it is indi-
cated how the theorem can be applied to calculate the volt-ampere char-
acteristic of A. F. Dittmer's "pierced collector" when placed in a Maxwellian
distribution.

The egect of reflection of ions at the collector surface in modifying currents
calculated by the preceding equations is discussed.
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' 'N A series' of articles the authors have given an account of a new

method of studying electrical discharges through gases at rather
low pressures. The method consists in the determination of the com-

plete volt-ampere characteristic of a small auxiliary electrode or collector

of standard shape placed in the path of the discharge, and in the inter-
pretation of this characteristic according to a new theory. In this way
it is found possible to obtain an accurate value for the potential of the
space near the collector, and much information concerning the nature,
velocity and space density of the ions. This method has already been

applied extensively by us in an investigation of the mercury-vapor arc,
and it has also been used by Compton, Turner and McCurdy in a
study of the striated discharges. '

The idea of using a sounding electrode or "probe" is, of course, not
new, but has been applied by Stark and others3 in an attempt to measure

space potentials and cathode drop in an arc. The measurements made
were in most cases confined to a determination of the potential assumed

by. the probe when it was "fioating, " i. e. , taking no current. As has
been pointed out by one of us, ' the conclusions drawn from these, and
from similar measurements, are mostly in error because of neglect to
take into account the effect of the proper motions of the ions striking
the probe, and of space charge effects in the neighborhood of the col-

lector. An exposition of the new theory, together with a condensed
derivation of some of the formulas used, was given in the first of the
series of articles already mentioned. This article will be referred to as
"Part I" throughout the rest of the present paper, whose purpose is
to complete the derivation of the equations and to extend the application
of the theory to some new cases.

In many types of discharges, we observe regions where a very uniform
state of ionization seems to exist. It is apparent that the densities of the
different kinds of ions remain sensibly the same from point to point,
and that their velocities can be described in terms of distribution func-

tions which are independent of the space coordinates. In a region of
this kind we imagine to be situated a small electrode whose potential
is varied. Our problem is to calculate the current to the electrode
contributed by each kind of ion as a function of the applied potential,
in terms of the assumed velocity distribution functions.

' Langmuir and Mott-Smith, G. E. Rev. 2'7, 449, 538, 616, 762, 810 (1924). See also
Langmuir, G. E. Rev. 26, 731 (1923); Science 58, 290 (1923); J. Frank. Inst. 196, 751
(1923).

~ Compton, Turner and McCurdy, Phys. Rev. 24, 597 (1924).
~ Stark, Ann. d. Physik 18, 212 (1905).
4 Langmuir, J. Frank. Inst. 196, 751 (1923).
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For example, let us consider the collector to be a wire of small diameter,
whose potential is made negative with respect to the region about it.
The wire then repels negative ions and electrons, but attracts positive
ions, and so becomes surrounded by a cylindrical positive "sheath"
or region of positive space charge. This sheath is of such dimensions
that the total positive charge in it equals the negative charge on the
wire, so that the field of the wire does not extend beyond the edge of
the sheath. The current taken by the wire therefore cannot exceed
the rate at which ions arrive at the sheath edge in consequence of their
proper motions.

If we suppose the negative potential of the collector to be large com-

pared with the voltage equivalent of the ion velocities, then the sheath
may be divided roughly into two parts. In the center will be a region
in which is concentrated most of the drop of potential between the gas
and the collector, so that in this region there will be present only positive
ions and possibly a few electrons or negative ions which had exceptionally
high velocity. Outside of this is a region in which both negative and posi-

)

tive ions are present in comparable quantities, but in which the normal
conditions existing in the discharge are modified through the withdrawal
of positive ions by the collector. The two regions merge into each other
more or less gradually in a way depending upon the distribution of
velocities among the ions. In the outer region, as a rough calculation
shows, the potential approaches the space value asymptotically but
never reaches it in finite distance. Actually, therefore, the sheath does
not have a sharply defined edge. Since, however, the whole drop of
potential in the outer region is small compared with the total, it will

be convenient to take as sheath boundary the surface at which the sharp
drop of potential begins, and to regard the distribution of density and
of velocity of the ions as known at this surface. This convention sim-

plifies. the discussion, and as we shall see, does not restrict the validity
of the equations derived in the present article. Accordingly, we shall

speak of the sheath as though it had a sharp edge; the potential at this
boundary we shall speak of as the space potential.

We shall further assume that the gas pressure is so low that there are
only a negligible number of collisions in the sheath between ions or
electrons and gas molecules. The ions in the sheath then describe free
orbits, some of which end on the surface of the collector. Now if the
sheath has axial symmetry so that the equipotentials are coaxial circular
cylinders, it is found from simple mechanical principles that the con-
dition for a positive or a negative ion to reach the collector depends not
upon the nature of the field of force along the whole orbit, but only
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upon the initial and final potentials and the initial velocity of the ion

on entering the sheath. The total current to the collector can thus be
found by summing the contributions of the ions of different signs and
initial velocities, and this current will be a function of the drop of
potential in the sheath and of the sheath radius only. Another relation
between these three variables can only be found by actually calculating
the distribution of potential in the sheath through the use of Poisson's

equation. It is thus seen that the problem of calcuIating the volt-
ampere characteristic of the collector in general divides itself into two

parts, the first of which is the purely "mechanical" probIem outlined

above, whiIe the second is a "space charge" problem. From the soIution
of these two problems there are obtained two independent equations re-

lating to the three variables just mentioned, and by elimination of the
sheath radius between these two equations a single equation can be
found expressing the current in terms of the potential.

On account of its great difficulty, the second or "space charge" part
of the problem has been solved for only a few cases, so that in general
we are not yet in a position to calculate the volt-ampere characteristic
of a collector, unless we use experimentally determined vaIues of the
sheath size. On the other hand, the solution of the "mechanicaI" or
"orbital motion" problem is reIatively easy, and it is with this side of the
question that we shall deal in the rest of the present paper. Under
certain conditions, as we shall see, the current is independent of the
sheath size so that the "orbital motion" equation actually gives the
volt-ampere characteristic of the collector.

So far we have taken as example illustrative of the genera1 theory,
the case of a small wire charged to a negative potential. lf we imagine
the wire now to be charged positively there will be formed about it
a sheath of negative ions and electrons moving toward the wire. The
discussion of the two cases is exactly similar except for reversal of the
sign of the charges and of the potential involved, and this rever'sal does
not change the form of the "orbital motion" equations. Throughout
the remainder of the paper, we therefore shall not specify the sign of the
ions involved, and the term "ion" is to be taken as applying indis-

criminately to positive ions, negative ions and electrons. *
The difhculties involved in the calculation of the current makes it

necessary for us to restrict ourselves to cases where the geometry is

* It is assumed in the foregoing discussion that every ion which reaches the collector
gives up its charge to it, i.e., that there is no reflection of either positive ions or electrons.
Later in the paper we shall consider how the equations which will be derived may need to
be modified to take into account the effect of reHection.
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simple. The three cases which can be treated by comparatively ele-

mentary means are those of a plane collector in which edge effects are
neglected, of a cylindrical collector in which the end effects are neg-

lected, and of a spherical collector in which the disturbing effect of the
connecting lead is neglected; the approximations made in neglecting these
corrections amount to assuming that the current per unit area is uni-

form over the surface of the collector. It is seen, therefore, that we can
not realize any of the theoretical cases in practice (except by the use of
guard rings), although we can approximate quite closely to them by
choosing proper conditions. On the whole, the cylindrical collector is the
most satisfactory in that the end corrections can be made comparatively
small, and the total current taken by the collector can be kept low, so as
to disturb as little as possible the normal condition of the discharge. We
shall treat in detail the cases of the cylindrical and the spherical collecter,
and for comparison, we shall also give the equations for a plane collector
receiving current on one side only for the case of a retarding potential.

I. GENERAL EQUATIONS FOR CYLINDRICAL AND SPHERICAL COLLECTORS

Taking up first the case of the cylinder, we may assume this to be
represented by a wire whose length / is large compared with its radius
r so that end corrections can be neglected. The wire is assumed to be
straight, or at least such that the radius of curvature of the axis is
everywhere large compared with r. Under these conditions the current
per unit length f/f is sensibly the same for all parts of the wire. For
the present we are also assuming that the composition of the ionized gas
is uniform about the collector, and that the ion velocities are random,
so that the sheath will be a circular cylinder of radius u concentric with

the collector.
Considering the ions of one particular sign only, let N be the number

per unit volume in a sr@all element of volume d7 bordering the sheath.
In a plane normal to the axis let u be the radial and v the tangential
component of velocity of an ion, u being counted positive when directed
toward the center. Then if

Xf(u, s)dl ds

is the number of ions in dr which have their velocity components u

and v lying in specified ranges du and dv, the total number of ions which

in unit time cross the sheath edge with velocities within the given limits

mill be 2rraNuf(N, s) du dv (&)

Let u„, v„be the radial and tangenti .--;. ,
e- '7-'. ' '- ' ". "~' an

ion arriving at the surface of thj~)'" "'- "' ': '" ''-- "- '"' "::;ofthe
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latter with respect to the sheath edge, to be taken positive w'hen the
collector attracts the ions. Then if e is the charge and m the mass of
an ion, we have from the laws of conservation of energy and of angular
momentum the equations

rv, = av
(2)

which solved for n„and v„become

(4)

Only those ions will be able to reach the collector for which

m&0, I„')0 (5) '

If we plot I, v as rectangular coordinates of a point and take U to
be positive, then the curve I„'=0 will be a hyperbola whose semi-

axes are

2—V

on the v and I axes respectively.
The region for which conditions (5) are satisfied is that lying between

the branches of the hyperbola and to the right of the v axis, and is shown

shaded in Fig. 1. The total number of ions reaching the collector per
second per unit length will be found by integrating expression (f) over

this region. The figure shows that for a given value of u, v must lie be-

tween limits —
v& and vi which are found by solving the equation u„'=0

for v, namely
rs ( s

—
)
I'+2—l' (. (6)

For U negative the curve u, '=0 becomes a hyperbola with the sam
axes as the previous one, but with its branches lying in the other two

* This last condition must be satisfied not only at the surface of the collector but al-
so on any intermediate surface lying between the collector and the sheath edge; in other
words the field of force must be such that the radial component of velocity does not

becoin~:itinsg' ~at endpoint on the orbit of an ion which satisfied condition (5). We
shall tacit jassi„,::„~„&liis&5 be: true throughout the following work, leaving the discussion
of this co&tIII8@jti~+4 &Mes'pm"i~& j&@-.&+a/& .-
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quadrants. The region for which conditions (5) are satisfied is shown

shaded in Fig. 2.

~v
/a*/r'-1

)Fig. t. Fig. 2.

It appears that n cannot be less than a certain value I& given by the
equation

Ni' = —2—. V
m

(7)

00

i=2ira/N» t ~t Nf(»», v) dsdu
~JO& N~

where the lower limit of n is to be taken 0 for V&0 and u& for V(0.
It is often convenient to replace E by an equivalent expression involving
the total current crossing a unit of area at the edge of the sheath. This
current I will be given by

oQ 00

I= N»
~

I Nf(N, s)ds dN ~

~JQ oJ —~

As the radius a of the sheath becomes infinite it is found that the
expression (8) approaches a limiting form, which can be obtained by the

application of the rule of d Hopital. If i is used to denote this limiting
value of the current, then

00

2s.alN» —2a„=,I ",:j::~;:i„=lim
Q~ 00

while for any value of I greater than this, v lies between the limits
—s, and v& defined by Eq. (6).

On multiplying expression (1) by the ionic charge» and the length l of
the collector and integrating over the regions indicated, we find for the
total current i.taken by the collector
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On substituting the ~alue of dv, /da calculated from Eq. (6) into this
expression and proceeding to the limit, we find

i„=4vrf Ne u u'+ 2 V—f(u, 0)du .
O, +1 fg

(10)

Turning now to the case of a spherical coL/ector, let r be the radius
of the collector and a that of the sheath, whose boundary is assumed to
be a concentric sphere. Let u, v, m be as before rectangular components
of velocity of an ion at the sheath edge, u being the radial component,
and let f(u, v, rv) be the distribution function for the three components.
We replace v, w by polar coordinates g, P so that if g is a new function
defined by

2%'

g(q, u) = f(u, q sing, q cos rP)dP
0

then qg(q, u) is the distribution function for the velocity components

g and u, q being the resultant of v and m. If q„, N„are the values of the
quantities indicated at the surface of the collector, then the mechanical
relations give us equations of exactly the same form as (2), v being re-

placed by g and v„by g, . We therefore obtain for the current to the
co1lector at potential V the expression

OQ qf' 1
$=4vN ea I ugg(tf, u)dgdu

O, ui 0
(12)

q& being defined by Eq. (6) in which v, is to be replaced by q, . The limit-

ing value of the current for a/r increasing is found as before to be

i„=2xr'Ne t u(u'+ 2—V)g(0 u)du . (13)
0, te1 ns

Final1y, ,for the plane collector with retarding potential the condition
for an ion to reach the collector is evidently that the energy component
in the direction normal to the p1ane exceed a fixed value determined by
the retarding potential. The general formulas are derived in an obvious
manner, and we shall content ourselves with giving the final result for
each type of velocity distribution taken up.

We proceed now to apply these general formulas to some specific
examples.

II. CoLLEcTQR CHARAc TERxs Tres FoR PARTIcULAR

TYPEs oF UELocrTY DrsTRzBUTroNs

(A) Vet'oc'&&&~ we@!f en rttagnitude and parallel in direction This.
, +j+j: . '.--. ,

' '
w$". ,)'$:,'~„

case, wh&ch carrpojj+'to'tiI~~~a "beam" of ions falling on the col-
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lector, strictly does not come under the scope of our general formulas,
because the sheath formed will not be symmetrical. The results in

this case can be obtained by the simpler method used in "Part I,"
and are given here for the sake of completeness. If Vp is the voltage
equivalent of the ion velocities, v.e have for a cylindrical collector placed
with its axis normal to the path of the ions

i = 2rtI+1+ V/Ve, for V) —Ve=0, for V &—Vp

(14a)

(14b)

I being the current per unit area conveyed by the ions outside the sheath.
For the spherical collector

( V&
i =rrr'Ij 1+—~, for V) —Vo

Vpr
(15a)

=0 for V &—Vp. (15b)

In each case the current is independent of the size of the sheath. This
ceases to be true, however, when the collector potential is so strongly
accelerating that the collector receives the entire current entering the
sheath. As the voltage increases the current increases according to the
above formulas until it reacffes this saturation value, after which it
remains constant unless the sheath changes in size.

For the plane collector the current evidently remains zero until the
retarding potentia[ —1 becomes less than the energy component of an
ion in the direction of the normal to the surface. This energy com-
ponent is Vpcos 0. where is angle between the normal and the path of the
ions outside the sheath.

(B) Velocities of uniform magnitude but witk directions distributed

at random in space. If c is the common magnitude of the velocities,
the velocities of ions in an element of volume will be represented in the
u, v, w diagram by points uniformly distributed over the surface of a
sphere of radius c. By considering the projections of these points on the
plane it is readily seen that the distribution function for the components
N, v is given by

1/2sc~+1 —( +u)/wc~ for u2+o'(c~
u, o)=

0 &01 u'+e')C'.
(16)

On substituting this in the general formula (9) we find for the current
density

I=¹c/4
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while from (8) the current to a cyEedrfcal collector is

i=0 , for V( —Vp

=27rrlI(1+U/Uo), for —Vp& V(0
(18a)

(18b)

=4a/I sin '
Q(g2 r2)

U r t' Ul—+ —
( 1+—(sin '

U, a & Vp)

y2

Vp —— V
a' —r' (18c)

Vp+ U

= 2mu/I

for 0&V&( ——1 [V.
gr2 )

a'
for V) ——1

[ Uo
r2

(18d)

(18e)

where V, is the voltage equivalent of c. We may describe these results
briefly by saying that for retarding voltages the current is independent
of the sheath radius and is a linear function of the voltage; foraccelerating
voltages it is expressed by a function which gradually changes from one

nearly linear in V to one nearly linear in QV as V increases; while for
a certain value of U it reaches the saturation value (last equation).
The limiting value of the current for a very large sheath is found by
(10) to be in the case of an accelerating potential

V ( Vi
i„=4rlI —+ 1+—sin '

Vo E Vp&
(19)

while for retarding potentials the current has the same value as that
given by (18b), since this is independent of the sheath radius. If we put

Vx'= 1+—
Up

then Eq. (19) can be expanded as follows

1 1 1
i =SrlIx 1 ——— ~ ~ ~

6 x' 40x' 116x'

(20)

(21)

which for x sufficiently large reduces to

Vi= SrlIx= SrlI 1+—.
Vp

(22)

Thus for large accelerating voltages and wires of- small diameter, the
square of the current is a linear function of the voltage.
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With the spherical col1ector it is evident from considerations of sym-

metry that the formulas for the current will be the same as those (15)
given for the velocity distribution of type (A), except that the projected
area err' of the collector must be replaced by its superficial area 4mr'.

For a plane collector of area A the current is

V ti =HI
I 1+—(, for Vo& V&0 .

Vo)
(23)

Fig. 3 illustrates the characteristics for the present kind of velocity
distribution of a plane electrode, a cylinder of small radius and a sphere
of small radius. In the last two cases the values plotted are those of i /i„
where i, is the current taken by the collector for V = 0. The abscissa
is the potential of the collector with respect to the space, counted posi-
tive when the collector attracts the ions; the ordinate is the value of the
current at the given voltage, divided by the value of the current taken

by the collector when it is at space potential.

Fro. 3.

(C) MaxwefHan distribution of velocities If 7 is . the temperature of
the distribution and k is Boltxmann's constant, then the distribution

function for the velocity components, n, v is

m
f(~ s) — s—( m/2kT) (a&+12)

2mAT
(24)

On substituting in (9) we obtain the well known formula of the kinetic

theory for the drift current I of the ions

ATI=Xe
27ryg
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In evaluating the integrals for the current i taken by a cylindrical

collector, we make the substitution

~V = 71 (26)
kT

which defines a new variable replacing the voltage. Further we use

new variables of integration defined by

m nsI xp' v
2k T 2kT

(27)

Substituting the value of f(u, v) in formula (8) and making these sub-

stitutions, we find

r v'x2+q v'a2 —r2

i = 8+s all
~c)~—„~o

xe (x'+&')dydx

An integration by parts reduces this to

—x2 r~x2+rf/~a2 —r2

i=8+ il( — "'dy
2 p x=0

—r2 g / (a2—r2)re x
+ '

e
—a2x2/(a2 —r2) dX

e g ~ay rj

In the second integral make the substitution

Q2 r2
x'+p = —y'

0
tf. en

r2rf/(a2 —r ), p r
u '.-*d~+ —. f'

0 8 v'a2ri / ( a2—r2)

or making use of the error function defined by
00

erf x= Je "'dy, —
i = 27rrfI — 1—erf

r

r'q
+ erf

g2 r2

8 'g

a' r' (28a)—

= 2mr/I e&,

for rj)0 (28a)

for q (0 (28b)

Thus, for retarding potentials the current to the cylinder is independent
of the sheath radius and its logarithm is a linear function of the colIector
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voltage, the s'lope of this linear function being e/kT as seen from (26).
For accelerating volt'ages the curves expressing i as a function of g for
a given value of a/r are roughly parabolic in shape for small values of
g, but have an asymptote which they approach as g becomes large,
the ordinate of this asymptote being the total. current which enters the
sheath. The larger the value of a/r, the greater is the value of rl .re-

quired to bring the current up to a given fraction of the saturation value.
The limiting value approached by the current as o/r becomes infinite
is by formula (10)

2i„=2vrrlI —ps+ s"erf/' (29)

For values of g greater than 2 it is found that this formula can be re-
placed with good approximation by the following

2= 2srlI —+1+ii
7r

which after substituting from (26) takes the following form

4 « .V&"-
I
=- I1+—

Ig2+rlI) - x E kT)

(30)

(31)

If therefore we plot the square of the current per unit area to a wire of
small radius against the applied voltage, we obtain in the case where the
distribution of velocities among the ions is Maxwellian a straight 1ine,
provided the voltage is accelerating and not too small. ' The intercept
of this line on the voltage axis is

V& = —kT/e (32)

so that from it we can deduce the origin of potentia1s, i. e., the space po-
tential. The slope of the line is

4 eS= ———I2
kr

which in virtue of (2) can be written

2
S=——(1')'.

g2 1g
(33)

Since the constants e, m are known, this equation enables us to calculate
X, the number of ions per unit volume in the ionized gas.

~ A figure showing the actual form of this graph over the entire voltage range together
with a table [calculated from Eq. (29)] which can be used to construct the graph in the
lower range of voltages is given in Part III of the authors' original article [G. E. Rev.
27', 617 (1924)].
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(34)

It is interesting to compare these results with those obtained under
case (B), as given by Eq. (22). There we also found that the square of
the current to a small cylindrical collector is a linear function of the
applied voltage for sufficiently large accelerating potentials. If from

Eq. (22) we calculate the slope of this linear function and insert the
expression for I from (17), we obtain precisely the result given by (33).
We would therefore be unable to distinguish between a Maxwellian
distribution and distribution (B) or (A) by studying the characteristic
of a small wire with accelerating potentials. On the other hand, for
retarding potentials the characteristics are entirely different, the cur-

rent being in one case an exponential and in the other a linear function
of the voltage.

In the case of the spherical collector, we start with the Maxwellian

distribution function for the three components N, v, m which is

s r())
I I

s—( m)I2 r) (vk v&+ am)

E2x kT)

from which we find according to (11)
t m y3~2

g(~ N) j ~
&
—( m/2kT) (v +q&)

go~ (k7'j (35}

Substituting in (12) and making use of the variable r) defined by (26),
we obtain on evaluating the integrals.

(368)

= 47fr'I e&, for g&0. (36b)

As in the case of a cylindrical collector, the current for retarding

potential is independent of the sheath radius and its logarithm is a
linear function of the voltage. For accelerating potentials the difference

between the current and its saturation value 47fa'I decreases expo-

nentially with the voltage. The limiting form of Eq. (36a) as )I ap-
proaches infinity can be found directly or by the use of Eq. (13). It is

f„4)rr'I(1=+r)) . (37)

For very small spheres the current is therefore a linear function of the

voltage when the latter is accelerating. Thus the form of the character-
istic is identical in this region with that obtained for spheres under case

(B), in contradistinction to the characteristic of a cylinder for a Max-

wellian distribution, which as we have seen merely approaches asymp-

totically the characteristic for distribution (B) as the accelerating

voltage is increased.
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The volt ampere characteristic of a plane electrode of area A with a
Maxwellian distribution is

i=IAe&, for g&0. (38)

Thus the cylinder, the sphere and the plane all have the same charac-
teristic for retarding voltage in a Maxwellian distribution of ions. As
we shall see later, this same characteristic is in fact possessed by a
collector of any shape whatever.

The curves of Fig. 4 illustrate the characteristics of the three forms
of collectors with a Maxwellian distribution.

FzG. 4.

(D) Distributiort which is llfctxwellictn with superimposed drift In.
certain types of discharge there are groups of ions which presumably
have the velocity distribution of a gas with "mass-motion. " For in-

stance, in the case of a mercury-vapor arc passing through a tube of
uniform diameter, collectors are found to have characteristics which if
interpreted according to the results of the last section would indicate
that the free electrons has a nearly perfect Maxwellian distribution of
velocities. This would imply that there was no net transport of electrons
in any direction, but actually the electrons must be drifting steadily
toward the anode. It becomes important therefore to 6nd what inter-
pretation should be put upon the collector characteristics in view of this
fact.

In the case just cited the drift velocity is usually small or at any rate
of the same order of magnitude as the average absolute velocity of the
Maxwellian distribution. In other cases there exist in discharges beams
of electrons which have a common high drift velocity on which is super-
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imposed a Maxwellian distribution of relatively low temperature. Both
of these cases will be treated in the following.

If the drift ve1ocity is up, then the distribution in question is Maxwellian
when referred to a set of coordinate axes moving with the velocity up.

Let u', v' be rectangular velocity components with respect to a set of
axes fixed in space, u being taken in the direction of up. Then the dis-
tribution function for the components u', v' is

-e (~/2») [(~~—u, ) +t~~2J2

We assume that a cylimdncol collector is placed with its axis perpendi-
cular- to the direction of up and choose the direction of v' to be also
perpend'icular to the axis. The radial and tangential velocity components
u and v of an ion at the edge of the sheath are now functions of its posi-
tion on the circumference. Let an ion be situated at a point on the cir-
cumference such that the directions of u and up make an angle 0 with
each other, then

. - u'= u cos 0+v sin 9

v'= —u sin 0+v cos 0

du dv =du dv

In terms of the new coordinates the distribution function becomes

Since conditions are now not symmetrical about the collector, the general
formulas (8), (9) and (10) need to be somewhat modified. It is clear
that the sheath itself will be no 1onger symmetrical and concentric
with the collector, so that the exact solution would be very dificult
if not impossible. Fortunately the case of most interest is that of sheaths
whose dimensions are large compared with r and for such sheaths the
actual shape can have but little influence on the current taken by the
collector. * W'e can therefore in the case of a large sheath consider it
to be circular, and the current to the collector wi11 be found by averaging
over the circumference the current given by Eq. (10), i. e.

Q 2 7r

f,„=2rfN~ i u u'+2 —V f(u, 0, 8) dud&
a' p u pl+1

which on substitution of the value of f becomes

~ This point will be more fully discussed in Section III.
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Wi„=2rlEe —,
,

l u
FkTJ p ~p&~1

i&m+ 2—p s—
& ~l»r& &~ +~0 —~~0~"' &dgde. (42)

m

It is convenient to introduce here the random current I„which is de-

hned as the current per unit area transported in one direction through

a plane moving with the velocity up. This current will therefore be
given by Eq. (25).

27rtg
(43)

The drift current I& is the total current per cm' carried by the ions

through a fixed plane perpendicular to the direction of up and is given by

Ig ——Soup.

W'e will also define a parameter o. as follows

(44)

3 up

2 C
(45)

where in the last expression C is the root-mean-square velocity of the
Maxwellian distribution. In terms of these quantities and of the vari-
ables defined by Eqs. (26) and (27), Eq. (42) may be written

8
z„=—rlI„&, '

' xgx."+»&, &*' ' *"'&dxd&&
o Jo, ~ (46)

The integral on the right cannot be expressed in finite terms, but
for negative values of » (when the right hand lower limit for x is taken)
it can be evaluated as an infinite series convergent for all n and q as
follows

(2p+ 1)!
I„(2 g , ')-—

„=0 2' (p!)'
(47)

e Cf. Jahnke u. Emde "Funktionentafeln"

Here i ~J„(xi) is the Bessel function of the first kind and pth order
with a pure imaginary argument, and is itself a real and increasing
function of x resembling the exponential. ' The series converges very
rapidly for small values of 0. ; for instance, when n=0.3, corresponding
to Id/I, =l approximately, the first three terms of the series give the
result correct to within four parts in ten thousand.

In the previous case of a Maxwellian distribution the current I
crossing a unit area of the sheath was identical with I„, the random cur-
rent in the gas. In the present case however, I is not the same for diBer-
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ferent parts of the sheath circumference, and must be replaced by an
average I which is different from I„. This average value is found by
putting rl =0 in (47) or (46) and dividing by the area of the collector.
We thus find

which for small values of 0. can be reduced to

I=I„(1+n2/2) =I„[1+0.040(Ig/I, ) '] . (49)

Thus when Iq/I, does not exceed 1, as is usually true in the case men-

tioned above of the mercury-vapor arcs, the difference between I and

I„ is not over four percent.
If we plot the logarithm of i~ calculated from (47) against rl we obtain

for different values of the parameter 0. a series of curves such as is shown

jn Fig. 5. For 0.'=0 we obtain the straight line corresponding to a

0 2
U'
0

FIG. 5.

pure Maxwellian distribution. For values of cx' between 0 and .2 the

curves are still sensibly straight lines over a range of about ten thousand
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fold change in the current, but the slopes of these lines decrease uniformly

asm increases. This range corresponds to values of the ratio of drift to
random current from zero to about 1.6, so that even with these rel-

atively large drift currents the characteristic of the collector will in-

dicate a Maxwellian velocity distribution for the ions. The temperature
determined from the characteristic will however differ from that of
the existing Maxwellian distribution, and the difference can be roughly
calculated from the slopes of the theoretical characteristics at the origin

0. From the preceding equations we can deduce the following formula

d I„( 3n2 5o4
So= —logi„~&=0=1 ——n'] 1+ + +

dg
"" I & 4 32 ) (50)

Since according to (48) the ratio I,/I does not differ much from unity
for n(1, we can reduce (50) to the following for small values of n:

(51)

The temperature of the distribution is proportional to the reciprocal
of the slope, hence we can summarize the above results in the following

statement: when the temperature of the Maxwellian velocity distribu-
tion of the ions is determined from the characteristics of a small cylin-
drical collector for retarding voltages, the result, in case a drift-current
exists, will be too large by a fractional amount which is approximately
1/4rr(Ig/I„) '.

For larger values of 0. it can be seen that the curve of log i vs g is not
quite straight, but becomes concave toward the potential axis. As n
becomes increasingly large, the expression for the current approaches
a limiting form which corresponds to the case of ions having a large
drift velocity on which is superimposed a small "temperature" motion.
There are two cases. On the one hand, if —g is less than 0.', the re-

tarding voltage is small compared to the voltage equivalent of the drift
velocity, and in the limit as the temperature decreases the expression
for the current approaches that given by Eq. (14) for the case of a
unidirectional stream of ions of equal velocities. On the other hand,
when —g is nearly equal to or greater than n a diA'erent limiting form
will be reached, because in this case the temperature motion a1though
small is nevertheless of importance when the retarding voltage is com-

parable with the voltage equivalent of the drift velocity. It will be
found convenient to replace g by a new variable ) defined by
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which in view of Eqs. (45) and (26) defining n and» can also be written

—(QUO —gU)
.kT

(53)

where Vo is the voltage equivalent of uo.

In terms of this variable it is found that the equation for the current
can be written as a series of powers of the reciprocal of o. whose first
two terms only are retained in the following equation

3

0 20! o
(54)

For large values of n and small values of ) tl-e expression for the current
therefore approaches the limiting form

2i„=—-rlIg

When ) =0 we get

AT
e
—~'-"&'Qx dx .

iVo ~o (55)

If then we put

2 k T 1 (3 l

i ~), , = rtl, ——— -T] —
)

.
eU» 2 44)

F(X) = 2
e-& "&' Qx dx

("I
E4J'

(56)

the equation for the current i can be written

Z~ =

(3l
1„4)I

2f lip
2+x

AT—F(X)
~Vo

= 0.34A„Ed
AT—F(),)
cVo

(57)

where A„ is the projected area of the collector.
The function F(X) can be evaluated ' by expansion in various series,

of which the most convenient appear to be the following.

T(-,'), "
2 2 C~—'F(~)= -" g ——-T

(
-+- (&., for ~&,

~

&f (58)2, n! 26+3 E2 4)
~ The integral defining J'"{)) can be reduced to a contour integral which is expressible

in terms of a certain type of the confluent hypergeometric function. Cf. 9/hittaker 8t
Watson, "Modern Analysis, " 3rd ed. , p. 349 (1920).
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93 31
+ -+ —+ e

—"', for~&1
256K 512K'

1 s. e—" " (4e+1)!g (—1)" —X '", for X( —1 . (60)
4 2 (—X)'" „e 2'"(2N)!s!

The first series is convergent for all values of ) but is only useful in. the
range indicated. The last two are asymptotic expansions. From these
series'the approximate values given in Table I were calculated.

—3—2—1.5—1.0—0.6-0.4

F(X)
1.072X10 5

.00264

.0200

.1094

.338

.501

TABLE

—0.2
0
0.2
0..4
0.6
0.8

I
I'P )
.730

1.000
1.312
1.655
2.018
2 '353

F(x)
1;0 2.685
1.4 3.31
1.8 3.86
2.2 4.33
2.6 4.71
3.0 4.98

The graph of the function is shown in Fig. 6. It can be seen from Eq. (59)
that when X is large and positive J'(X) becomes nearly proportional to
QX..' Now ) is approximately proportional to the difference between

5

0

lp91p erf (-A) (Plane) g&

/, f 'l p91p F ( A)(Cylinder)

//
/i'

//
fg

//
//

/ /'

,~ F(A)((:blinder)

arf (-A)(PI ane)
/

-l 0 I 2

FIG. 6.

the potential of the collector and the voltage equivalent of the drift
velocity of the ions. I In this region, therefore, the current is approxi-
mately a parabolic function of this voltage difference. But we found
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[(cf. Eq. (30)] that in the case of a pure Maxwellian distribution the
same relation held between the current and the potential of the collector
with respect to the space, when this potential was an accelerating one.
We see therefore that in the present case when the retarding voltage
on the collector is less than Vo the current is nearly the same, except
for a constant factor, as though the drift velocity were annihilated and

the collector voltage raised by the corresponding amount. On the other
hand when X is negative Eq. (60) shows that the current decreases very
rapidly as —) increases, but the logarithm of the current is roughly
a linear function of the square of the voltage difference X, while with

a Maxwellian distribution log i is a linear function of the first power of
the corresponding voltage.

For comparison there is plotted in Fig. 6 the graph of the function

erf( X) T—his . is approximately the volt-ampere characteristic of a
plane collector placed perpendicular to the direction of the drift velo-

city when this velocity is large compared with the Maxwellian motion.
It will be seen that for negative X the currents to the two kinds of col-

lectors stand in a nearly constant ratio, but for positive ) the current
to the plane reaches a saturation value while that to the cylinder con-

tinued to increase parabolically. The size of the error made in using

formula (57) to calculate the current when the ratio of the drift to the
random current is not very large can be seen from Eq. (54). The second

integral in formula (54) is approximately equal to the first one for

~X~ ~1 so that the percentage error caused by omitting the second in-

tegral is of the order of 100/a.
For the spherical coL/ecfor with the present velocity distribution

function there can be obtained similar equations which; however, for
the sake of brevity we shall omit. We will give only the results cor-

responding to Eqs. (51) and (55). In the case of the spherical collector
the error made in determining the temperature of a Maxwellian dis-

tribution which is modified by a small drift velocity is only two thirds
as much as for the cylindrical collector. When the potential of the
spherical collector is retarding and greater in absolute magnitude than
the voltage equivalent Vo of the drift velocity, the current to the col-
lector is approximately the same as though the drift velocity were

removed and the collector voltage raised by Vo (the two currents speci-
fied being he're equal instead of merely proportional as with the cylindri-

cal collector).
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III; DISCUSSION OF EQUATIONS; GENERAL THEOREMS; EFFECT OF

REFLECTION AT THE COLLECTOR SURFACE

In deriving the foregoing equations we have ignored the distribution
of potential within the sheath, and have assumed that the current taken

by a collector from a sheath of given dimensions depends only on the
total di8erence of potential between the collector and the sheath
boundary. But this certainly cannot be true without some restrictions
on the nature of the field in the sheath. For instance, there is the obvious
qualification that the potential of any point within the sheath must
lie between the extreme values of the potential of the collector and of
the sheath boundary. This condition is sufhcient in the case of the
plane collector, and of the cylindrical and spherical collectors where the
ions cons~dered are moving in a retarding field. If however ions are

moving in an accelerating field toward a cylindrical or spherical col-
lector some further condition must be added, as can be seen for example
from the fact that whereas our equations for this case give a value for
the current greater than io the current taken at the space potential, the
current for any accelerating potential would actually be reduced to io
if the whole voltage drop in the sheath were concentrated in a thin layer
covering the collector.

Let us consider in more detail the case of the cylindrical collector at an
accelerating potential. It has already been pointed out [(cf.footnote to (5)]
that the conditions expressed by (5) which are satis6ed by the initial
velocity components of an ion reaching the collector must be supple-
mented by the assumption that the radial velocity component does pot
become imaginary at any point on the orbit of such an ion. The as-
sumption implies some property of the field of force which we proceed
to investigate. The initial velocity-components u, v satisfying condi-
tions (5) are represented by points lying in the shaded region of Fig. 1.
Now if an ion with certain values of u and v is able to reach the collector,
it is clear that any ion with the same value of u but a smaller value of v

will also be able to do so. It is sufficient therefore to discuss the condi-
tions relative to the points on the hyperbolic' boundary of the region in
question.

If u„v, are the radial and tangential velocity components of an ion
at a distance s from the center, then the relation between u„v, and u, v

must be given by Eq. (3) when s is substituted for r, and V, the poten-
tial at the distance s for V„. That is

(61)
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(62)

The relation between the initial velocity components of an ion cor-

responding to a point on the hyperbola in Fig. I is given by Eq. (6).
Such an ion in order to reach the co11ector, roust'satisfy for every value

of s between g and r the condition

I,') 0 (63)

On substituting from Eq. (6) into (61) and transposing, etc. , we find

that this inequality can be written

g —s r g' —s r ~m
V& ——V —I'

g2 r2 s2, g2 r2 s2
(64)

The quantity in brackets is always positive when s lies between c and

r, so that if (64) is to be satisfied for every value of u between zero and

infinity we must have

which can be written

.g2 s2 f2
V) ——V

g2 . r2 s2
(65)

(66)

where 3SI is a constant independent of s. This inequality therefore ex-

presses the propeity which must be possessed by the field of force in

the sheath in order that the equations which we have developed for the
volt-ampere characteristic of a cylinder may apply.

I'n the case of the spherical collector the discussion is the same except
that v must be replaced by g, the resultant tangential component (re-
gardless of direction). The conclusion reached is therefore that the
equations which we have developed for the sphere will only hold if
condition (65) or (66) is satisfied.

From another point of view these conditions define more exactly
what we have called a "sheath-edge"; for it can easily be seen that if
we assume any distribution of potential we like between a and r we
can always find a cylinder (or sphere) of radius a' intermediate be-
tween a and r such that for this cylinder (sphere) or any other of smaller

radius, condition (65) is satisfied when a is substituted for a. In other
words such a s~urface can be taken to be the edge of the sheath if the
distribution function for the velocities of the ions crossing it is known.
As far as the equations of orbital motion determine it, the sheath edge

is therefore simply a surface on which we know the velocities of the ions
and within which the condition (65) is satisfied.
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Additional light is thrown upon this point by an alternative method
of calculating the current to: a -cyliri'drical or spherical collector. In-
stead of considering the distribution of velocity components among the
ions in an element of volume, we can resolve the whole of the ions out-
side the sheath into a number of swarms consisting:of ions moving in

parallel lines with equal velocities (i. e. the direction and magnitude
of the velocities in each swarm fall within small ranges centering about
given mean values), that is, into distributions each of which is of the type
considered under II (A). For each swarm the collector will possess an
effective target area such that every ion will be collected whose rectilinear
path outside the sheath when prolonged falls on the target. The total
current is then found by multiplying this target area by the current
density of the swarm and adding the products for all the swarms.
. The target area of the collector in general depends only upon the

collector potential and the velocity of the ions in the corresponding
swarm, and not upon the nature of the orbits described by the ions in

the field of force of the collector. In fact, Eq. (14a) shows that the
width of the target is A+1+ V/V, . But when this quantity exceeds the
width of..the force field, it is evident that the latter width must be sub-
stituted for the former in computing the current contribution of the
corresponding. swarm of ions. Even before the ultimate limit is reached
the width of the target may be restricted to a smaller limit if condition
(65) is not satisfied everywhere in the field of force. In this way the
radius of the force-field or some related quantity enters into the cal-
culation, so that the total current to the collector depends upon the
"sheath-radius. "

It is to be noted however that for retarding potentials on the collector
the ca1culated target width is less than the diameter of the collector.
In this case, therefore, the current to the collector is independent not
only of the distribution of potential in the sheath but also of the actual
dimensions of the sheath. This has already been found true for all the
cases treated in this article, as will be confirmed by examining Eqs.
(14a), (15a), (18b), (28b), (36b).

A.gain in the case of. accelerating potentials, for which the calculated
target width is greater than the collector diameter, simple conditions must
be reached when the radius of the sheath is made sufficiently large com-
pared with that of the collector. In such case the sheath diameter
will eventually become greater than the target widths calculated for all

the different swarms, so that the total current to the collector once more
becomes independent of the sheath radius. This explains the result
already found that the current to a cylindrical or spherical collector
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at accelerating potential reaches a limit as the sheath radius is indefi-

nitely increased. By the same argument the current for very large sheaths
must be independent of' the actual shape of the sheath, which justifies
the assumption of this kind which we made in treating the cases where
unsymmetrical sheaths are formed about the collector.

The equations derived in Section I I hold for ions of either sign, sub-

ject to the conventions already made that the potential of the collector
with respect 'to the space is to be counted positive when the collector
attracts the ions. When ions of both signs are being collected, the.
contribution from the ions of each sign are simply added, in doing this
we may need to use a different size of sheath for the positive current
and for the negative current. The calculation of the current assumes
that the sheath sizes and velocity distributions are known, but of
course, the real use of the equations lies in the determination of the
velocity and density distribution of the ions from the observed char-
acteristics. This is possible when conditions are such that practically
all the current comes from one group of ions, as for instance the electrons.
Unless the. sheath sizes are measured directly, it will further be ne-

cessary to use collectors of each shape and size that the current does'

not depend upon the sheath size.
With these conditions it will be possible by examination of the volt-

ampere characteristic to determine whether the velocity distribution
of the ions considered is one of the types treated above. But it is also

interesting to consider the inverse problem of calculating directly the
velocity distribution function from the volt-ampere characteristic.

For the plane electrode with retarding voltages this calculation is

simple, since the slope of the curve of current vs. voltage at any point
is proportional to the number of ions having a velocity component
normal to the plane which lies within a chosen fixed small range center-

ing about the value corresponding to the collector voltage. In practice
however the large size of the electrode necessary to realize the conditions

of the plane electrodes sometimes disturb the normal conditions of the
discharge so much as to vitiate the results. It is better then to use a
spherical or cylindrical collector, chosen so sima11 that the current to it
will be independent of the size and shape of the sheath.

The current taken by a spherical collector with retarding potentials
when'the sheath' is very",. large is given by Eqs. (13) and (7).
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This equation can only be applied if the ions have no drift motion
so that the distribution function involves the velocities components only
in the form of their resultant gu'+v'+w'. By two successive differen-

tiations the above equation is reduced to

d2i (e& 2 (—=4/ —
i

-r2x~gi o,
dv' t m&

e—2—V/
tn

(67)

Thus an analysis of the volt-ampere characteristic of the collector enables
us to determine the distribution function g(0, c) where c is the velocity
equivalent to the potential V of the collector. This function actually
involves only one variable, so that we may call it G(c). Then c'G(c)dc
is the fraction of the number of ions in a given volume for which the
resultant velocity c falls within the range from c to c+dc.

For the cylindrical collector under the same conditions of large
sheaths and a retarding potential we have from Eq. (10)

u u'+2 —V f(u) o)dl,
m

1 m
P = ——u'

2
and putting

i(V) =4.rllVe)t
&—pay'( m

On introducing a new variable of integration P given by

this becomes

2—P, o
) =F(P)

lmP & m

i(V) =— QP+V F(P)df
A

which on differentiation gives
2 d "F(P)——i(s) = (68)
A dV J vQy+V

If we regard i(V) as a known function, this constitutes an integral

equation for F(f), of a type which has been treated by LiouviHe. The
solution can be written'

OQ

FQ)= —
~

i"( P t')dt- —
~Ado

(69)

where according to the usual notation the prime denotes differentiation
of i with respect to its argument. It is to be noted that this formula

' See for example Volterra "Les Equations Integrales, etc."
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involves only the values of i corresponding to negative potentials on
the collector. Other formulas equivalent to (69) can easily be derived,
which are more convenient in special cases.

This equation then enables us to calcu1ate the distribution function

F(lb) from the observed characteristic of a cylindrical collector. The
derivation of the original Eq. (10) assumes only that the distribution
function is symmetrical in tt and v. Thus 2&rqI'Q)dg is the fraction
of the ions for which the resultant g of the velocity components I and v

falls in a specified range dg, &P being the voltage equivalent of g.
Special properties of the Maxsoethan dkstribution The. equations

which have been given show that when a plane, cylindrical or spherical
collector is placed in a Maxwellian 6eld of ions, the current for retarding
potentials is given by the same simple formula, namely,

j= ape'~t ~~

where io is the current taken by the collector when it is at the same
potential as the surrounding space.

Although we have assumed that the ions describe free orbits in the
sheath, Eq. (70) is the same as would be derived on the assumption
that the ions made collisions with each other and reached a state of
statistical equilibrium, for in such a distribution the law of distribution
of velocities at every point is Maxwellian, while the distribution of
density is given by Boltzmann's law. 9 That is, Eq. (70) indicates that
in the sheaths of the three coIlectors mentioned, the ions retain the
distribution of velocities and of densities proper to a state of statistical
equilibrium, even though they make no collisions with each other.

That this is so is mell known for the plane case, and it can also be shown

directly to be true for the cylindrical and spherical cases. Taking the
cylindricol case Erst and considering only the inward-moving ions, let
I,(u, v)dudv stand for the current carried across a unit area of the
sheath boundary by ions having velocity components in the specified
range dtt dv, and I,(u„v,) du, dv, for the corresponding quantity at some

intermediate distance s where the velocity components are u„v, . For
a Maxwellian distribution at the boundary we have according to Eq. (24)

I,(N, )dzvcdv =Ae im"""& & '+"'&ndldv (71)

where 2 is a constant. Since the total currents carried by the ions in

question across the sheath boundary and the intermediate cylinde~ are
the same, we have

sI, (g„v,)du, dv, =aI ( , I)d vd Nv

Compare "Part I," p. 450.
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The relations between the quantities u, v, u„v, are given by Eqs.
(61), (62) from which we obtain the further result

Bv 8'0

8 Qs BVs

BQ &IIIN

~ Ns ~Vs s us
dusd'Vs =——dusd Vs

g Q
(73)

On substituting from (71), (61), (73), in (72) we find

EVs 2 21,(&e„v,)d«, dv, =Ae &,r e &"&'" &&~ ~ +"~ &N,d&edv, (74)

An examination of Eq. (61) of transformation shows that the values
of v, range from —~ to fx) and of u, from 0 to ~ since we are assuming
that V, is negative. Bearing this fact in mind and comparing (74)
with (71) we see that the ions at s have the same velocity distribution
which they had at g, while the number of ions in a given velocity range
stand at the ratio e' " at the two places. The first part of this result
shows that the.velocity distribution at s is still Maxwellian, while the
second part shows that the variation of density from point to point is
governed by Boltzmann's equation; excepting of course for the fact
that only one-half the ions of a complete Maxwellian distribution
are included, i. e. those having a positive radial velocity component. .

It is interesting to see how these results must be modified for the
case when V, is positive, so that the ions are accelerated as they move
into the sheath. Eq. (74) still holds, but a consideration of the trans-
formation Eq. (61) shows that certain values of u, and v, are excluded.
In fact the only points in the u„v, plane which correspond to real
values of u and to positive values of u, are those lying to the right of
the v, axis and outside of the ellipse

(75)

constituting the region shown shaded in Fig. 7. We see then that even
with an accelerating potential on the collector the Maxwellian nature
of the distribution is not completely obliterated as the ions move into the
sheath. At any point certain whole groups of ions proper to a Maxwellian
distribution are absent, but the remaining ions have precisely the distri-
bution according to velocity-coordinates which is characteristic of
a complete Maxwellian distribution having the same temperature as that
of the ions at the sheath boundary. Furthermore, the space density of
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ions in each velocity-class outside the excluded ones satisfies Boltzmann's
equation.

FzG. 7.

The argument for the spherica1 case

is the same, except that the tangential

component q, replaces v, . With a retard-

ing potential on the collector the ions in

the sheath will have a distribution of

velocities and densities given by Max-

well's and Boltzmann's equations. With

an accelerating potential, the distribu-

tion will be the same except that at any

radial distance s no ions will be present

for which the velocity points, having

coordinates u„v„w„ fall within. an oblate

ellipsoid which can be generated by re-

volving the ellipse of Fig. 7 about the

n axis.

In' view of the similarity of these results for the sheaths about the plane,

the cylindrical and the spherical collector, it seems reasonable to infer

that they hold for force-fields of any shape under the conditions as-

sumed, and in fact we can state a general theorem concerning such

fields of force which may be formulated in the following way. Let us

consider a conservative system consisting of a large number of particles

moving in an enclosed space and continually exchanging energy and

momentum with each other so that a state of statistical equilibrium

is reached in which there is a law of distribution of positional and velo-

city components which we shall, for brevity, denote by D~ (Dw being

then the distribution defined by Maxwell's and Boltzmann's equations).

In this space we imagine to exist a region A in which there is no inter-

action by collision or otherwise between the particles, and in which

there is a field of force acting on the particles. Any interior boundary

surfaces of A (such as the surfaces of collectors) we shall assume to be

perfectly reHecting. The particles penetrating into A will then describe
"orbits" under the inHuence of the force field and eventually return

to the exterior boundary of A. If we consider not merely the orbits

actually described by particles but the totality of orbits which may be

followed by a particle in 2 with all possible modes of starting from in-

terior points, there may be some of these paths which never carry the

particles outside of A. These we wi11 call "interior orbits. " Our theorem

is then as follows. 'if the field 2 has no interior orbits, the distribution of
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particles throughout it will be D~, if interior orbits exist, the distribu-
tion will be D~ except for an excluded class qf particles, these being
the ones which would describe the interior orbits if they were present.

To prove the theorem, let us imagine that after a steady state has
been reached we introduce temporarily some mechanism allowing the
particles in A to interchange momenta. For instance we can introduce
a sufficient number of particles which are not acted upon by the field

in A, and which are initially given the distribution D~ in A and outside
of A. Through collisions with these "neutral" particles the original

particles, without loss of energy of momentum as a whole, will acquire
a distribution which is D~ in A if it was not such before. This distribu-

-tion in A will persist if the neutral particles are removed, and will re-

main in equilibrium with the distribution outside of A. '

Now it is a characteristic of D~ that it includes particles moving along
every possible orbit" in A. If there are no interior orbits, all the orbits
in A eventually return to the exterior boundary. Since in the new state of
equilibrium the particles are once more moving freely in A, the new

state cannot differ from the old one, so that even before the introduction
of the "catalyzing" agent the distribution in A must have been D~.
If there are interior orbits, then in the new state of equilibrium there
must be present circulating particles which describe these orbits. But
there orbits never intersect those of the other particles in 2, so that if
we imagine the circulating particles to be removed, the resulting dis-
tribution must be the same as that which existed before the introduction
of the catalyst. The original distribution is then seen to differ from

D~ only in the way stated in the theorem.
We have so far assumed all "collectors" in to be perfectly reflecting.

In this state, the current of particles moving toward a given collector P
is equal to that moving away from it. Considering only the ingoing

current, this may be composed of a current IJ consisting of particles
which move directly from tl;e exterior boundary of A to P, and of a
current Ip@ of partic1es which reach P after having previously touched
snot' er collector or collectors Q. If we now assume that the collectors

"The proof of this statement may be based upon thermodynamic grounds: for
according to the Second Law the system cannot depart from the state of statistical
equilibrium once this has been reached through the temporary introduction of the
"catalyzing" mechanism. In the usual treatment of such problems from the standpoint
of statistical mechanics, the assumption that the system remains in a state of equilibrium
is equivalent to the assumption that the system is "quasi-ergodig. "

"Since the number of particles in not infinite, it is understood of course that this
statement is not to be taken literally, but in the sense that a particle can be found which
describes a path which differs but little from a previously chosen path.
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absorb all the particles which reach them, it is seen that the current II
will remain unchanged, while the current II@ will vanish. This indi-

cates the way in which the results given by our theorem must be modi-

fied when they are applied to the calculation of the current to a col-
lector in an actual case.

An interesting and important application of this theorem is the fol-

lowing. We consider two closed surfaces S and R, (Senclosing R), which

are equipotentials in a field of force, and we imagine that particles pass
in both directions through 5 with a Maxwellian distribution of velocities
and describe free orbits in the interior. By the above theorem we know

that the distribution of velocity and density of particles throughout
the interior of 5 will be given by Maxwell's and Boltzmann's laws except
for the absence of certain numbers of particles which would describe
interior orbits. If we now imagine these circulating particles to be sup-

plied. the distribution will be D~ throughout. In this distribution let

i8 be the total current leaving 5 and reaching E, i~ the total current
leaving R and reaching S, and Ia, Ig the currents per unit area crossing
5 and R respectively. Then since we are assuming that conditions are
steady and that the particles meet with no obstacle within S,

~8 8
~S ~B (76)

Further, the space densities of the particles is uniform over S and uni-

form over R and the ratio of these densities is given by Boltzmann's

equation. Since the average velocities of the particles are also equal
at the two surfaces, the currents IB and I must be related by the Boltz-
mann equation, i. e.

—I&e(v g-v 8) I&T' (77)

where yg, y8 are the potentials of R and of 5, and 1is the temperature
of the Maxwell distribution of velocities. On dividing the first of these
equations by the second we obtain

P/I, = e&~a ~s&~"'ie~/Ia

The current I8 can be divided into two equal parts, of which one is

composed of outwardly and the other of inwardly moving particles,
and similarly with I~. The above equation therefore is still valid if
we take I8 to mean the current traversing 5 from the exterior to the
interior, and Iz the current traversing R in the contrary sense. Finally
we can remove the particles which describe closed orbits not cutting S
or R since they contribute nothing to any of the currents considered.
Eq. (78) now gives a relation between the solution of two problems, in
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the first of which the surface S emits particles with a Maxwellian dis-
tribution of velocities and a current density I8 toward an interior surface
R which collects a total current ia, while in the second problem the
surface R emits particles with a Maxwellian distribution and current
density Ig toward an exterior surface S which receives the total cur-
rent i~. It is to be noted that I8, Ig are currents per unit area while

i~, i8 are total currents. If we let A8, Ag stand for the areas of S
and of R, fa for the fraction of the total current leaving S that reaches
R in the 6rst problem, and fs for the fraction of the total current leav-

ing R that reaches S in the second problem, then Eq. (78) can be written

(79)

By means of Eq. (79) we can deduce our Eq. (28a) relating to the case
of concentric cylinders from an equation previously deduced by Schottky~
who considered the problem, inverse to ours, of a cylinder emitting ions

having a Maxwellian distribution of velocities toward an outer con-
centric cylinder. For a retarding potential of V volts applied between
the cylinders Schottky found the result which in our notation is

Here i is the current collected by the outer cylinder, io the saturation
current from the inner cylinder, c and r the radii of the outer and inner
cylinders respectively. Now a retarding potential in this problem is an
ccceterating one in the converse problem where the two cylinders keep
their potentials but the ions are emitted by the outer one and collected

by the inner one. Using Eq. (79) and letting S stand for the outer and
R the inner cylinder, we find for the solution of the converse problem
a result which is easily seen to be identical with Eq. (80). It is to be
noted that in Schottky's problem the distribution of velocities in the
space between the cylinders is not Maxwellian even though the field

retards the outward moving ions. This is in agreement with our general
theorem since obviously there exist interior orbits in this field.

As another example of the application of the general theorem, we may
consider the characteristic of a collector which has been used by A. F.
Dittmer. This consists of a plane, electrode A placed behind and close
to a parallel electrode 8 which is pierced by a small circular hole, the
front plate 8 shielding the back one A from the discharge so that the

+ Schottky, Ann. d. Physik, 44 1011 {1914).
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ions reaching the latter must pass through the hole. Let us suppose
that the space in front of 8 is filled with ions of which those of one sign,
say for definiteness the electrons, have a Maxwellian distribution of
velocities and a density uniform in space. If now we make the potential
of B sufficiently negative, a positive ion sheath will be formed in front
of 8, and the surface C bounding the sheath may be taken to be a
plane parallel to 8 if the sheath thickness is not too small compared with
the diameter of the hole. Taking the potential of C to be zero, we bring
A to a positive potential sufficient to repel positive ions and allow only
electrons to reach it. The electrons leaving the sheath edge C move
into a retarding field, but there will be a certain surface 5 capping the
hole, such that the component of electric force normal to the planes
A, 8, C vanishes at each point of 5. Every electron which is able to
reach this surface 5 finds itself in a field accelerating it toward A, as soon

Frr. 8

as it crosses 5. Most of the electrons crossing 5 consequently reach A,
these being the ones moving along some such path as P, in Fig. 8.
A few electrons having very high transverse velocities on reaching 5
will move along paths like P2 and so fail to reach A after crossing 5.
But these latter electrons have such high transverse velocity on leaving
C that their number, according to the Maxwellian law, is very small.
Thus we may take the surface 5 as being effectively the "collector"
determining the current to A.

The potential of this collector varies from point to point, being the
same as that of 8 at the edge, but more positive in the middle on account
of the inHuence of the positive potential on A. If the potentials of 8
and A are so adjusted that the center of 5 is negative, the entire surface
will constitute a collector, which repels e1ectrons. A little consideration
shows that in this case there are practically no interior orbits, in the
space included between C and 5+8; that is, there are no paths leading
to A and crossing 5 which do not originate from C. Therefore according
to the general theorem the distribution. of velocities among the electrons
crossing 5 must be Maxwellian, and the distribution of space den ity
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must be governed by Boltzmann"s law. This result enables us to cal-
culate very simply the current to A if we know the shape of the surface S
and the potential at each point of it. A particularly simple case occurs
when the field strengths at the plate 8 on each side are equal in magni-

tude, for in this case S is plane.

Effect of refiection and of secondary electron emission on the ckaracter

istics of collectors. We come now to the consideration of the question
as to how the equations of Section II relating to the characteristics
of collectors must be modified when either reflection or secondary
electron emission occurs at the collector. In the first place, when the
potential of the collector is such as to accelerate ions of a particular
class, any of these ions which may be reflected at the collector surface will

eventually be drawn back to the surface, since they leave it with less

velocity than they had on striking it.* Thus the volt ampere character-
istic of a collector can only be affected by reliection when the field
at the collector surface is such as to repel the ions considered In a.ccordance
with our convention with regard to the sign of voltages, this means
that the equations of Section II will be in error on account of reHection

only in case V is negative.
Although the reHection coefficient of a surface for electrons is usually

assumed to be a function of the angle of incidence of the electrons at
the surface, theie is reason to believe that for a su~face carefully cleaned

by heating or ion bombardment the dependence upon the angle of
incidence disappears. '3 Even with this simplification the calculation.
of the characteristics of a collectar on which reHection takes place v.ill be
in general very complicated, since the reHection coe%cient still depends

upon the velccity with which the electrons reach the collector. The
carrying out of the ca/culation is scarcely justified, since the form of the
reflection function is known only approximately and for a few different
materials, and since in any event it is known that a collector may change
its reHection coefficient for electrons very greatly in the course of a
single series of experiments through the deposition of a film on its sur-

~ Exceptions to this statement may occur in certain cases which are illustrated by the
following example. Let a plane collector be divided into two parts A and B placed close
together, the current to each part being measured separately. Suppose that ions are
being drawn to the 'collectors by a rather large accelerating voltage, so that they arrive
at A or B in a direction practically normal to the surface. If an ion is reflected from a
point near the edge of A, whether it returns to A or to B depends largely on the trans-
verse component of velocity which it has after reflection so that a certain fraction only
of the current reflected from A will return to A, the rest going to B. Thus the ratio of
the currents to A and to B will depend to a certain extent upon their relative reflecting
po.wers."Cf. C. Tingwalt, Zeits. f. Physik 34, 280 (1925).
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face. We shall content ourselves with pointing out in a general way the
eBect of reflection in the cases which we have treated.

The effect of electron reflection on the collector characteristic depends

upon the velocity distribution of the electrons. In certain cases the
result of the reflection can be found quite simply. For instance, in case
the distribution is oF type 2 or 8 (where the electrons all have equal

energies) the electrons arriving at the collector surface will all have equal
velocities. If now the reHection coefficient is independent of the angle

of incidence but is known as a function of the velocity, it is plain that
the actual characteristics of the collector can be found by multiplying
the current calculated on the basis of no reHection by 1 —R(v), where

v is the velocity with which electrons arrive at the collector as deter-
mined by its potential and R(v) is the corresponding reffection coefficient.

Another distribution giving simple results is the Maxwellian one.
We have seen that in this kind of distribution a collector of any shape
whatever gives a characteristic for retarding potential which is such

that if the logarithm of the current is plotted against the voltage a
straight line is obtained. Furthermore the distribution of velocities

among the electrons arriving at the collector is the same whatever the
collector potential may be. Thus the percentage refection is the same

for every value of the collector voltage, and consequently the effect of

reHection will be simply to displace downward the straight line of the
semilogarithmic plot. The slope of this line will however stil1 correspond
to the temperature of the distribution. The eAect of the reHection will

only become apparent when the collector passes through the space po-
tential when there should be a sudden increase of the current due to
the recapture of the reflected electrons.

Secondary emission of electrons due to e1ectron bombardment is in

general indistinguishable from electron reflection, and its effects upon

the characteristics of a collector will be the same as those of reflection.
Emission of electrons due to the bombardment of positive ions however

would have the effect of increasing the total current to a collector whose

potential is such as to attract positive ions and keep off all electrons
from the discharge (i. e. a highly negative potential). This increase

would be very noticeable, since the positive ion current to the collector
in this range usually increases only very slowly as the collector is made

more negative. Thus the study of the characteristics of a collector under

these conditions would show immediately whether or not the emission

of electrons occur. We may note for instance that the characteristics
of a large plane collector in a mercury arc discharge at low pressure

(8 bars) show that the current of secondary electrons due to the bombard-



COLLECTORS IN GASEOUS DISCHARGES 763

ment of mercury positive ions of 1000 volts velocity cannot be greater
than 5 percent of the total current to the collector, ' this being ap-
proximately the experimental error in determining the current.

We have said that the equations developed in this article are valid
even when reflection occurs in the cases where the ions are being ac-
celerated toward the collector. This is true in the sense that the equa-
tions give the correct value of the current as a function of the voltage
and of the dimensions of the sheath, when these dimensions are a factor.
But the effect of reflection will be to make the dimensions of the sheath
different from what they would be in the absence of reflections, so that
in this manner the value of the current may be affected indirectly.
If an accurate theory giving the dimensions of the sheath calculated
from the space charge equation were available, a comparison between
the calculated and observed dimensions would show whether or not
reflection was taking place.
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